A special case of \(p \)-groups

Nabil Mlaiki

Department of Mathematics and General Sciences, Prince Sultan University
Riyadh, Saudi Arabia 11586
E-mail: nmlaiki@psu.edu.sa; nmlaiki2012@gmail.com

Abstract

A group \(G \) is called a \(C_p \)-group, if \(G \) is a \(p \)-group for some prime \(p \), and

\[
Z(G) \leq G' < V(G) < G,
\]

where \(Z(G) \) is the center of \(G \) and \(G' \) is the commutator subgroup. It is a well known fact that a \(p \)-groups has a non trivial center. In this paper, we give some upper bound for the center of a \(C_p \)-group. We showed that if \(G \) is a \(C_p \)-group, then

\[
|Z(G)| \leq |G : Z(G)|.
\]

Moreover, if \(G \) has nilpotence class 3, then \(|Z(G)| \leq |G : G'| \).

Next, Let \(G \) be a finite group. We write \(\text{Irr}(G) \) for the set of irreducible characters of \(G \) and \(\text{nl}(G) = \{ \chi \in \text{Irr}(G) \mid \chi(1) \neq 1 \} \). Define the vanishing off subgroup of \(G \), by

\[
V(G) = \{ g \in G \mid \text{there exists } \chi \in \text{nl}(G) \text{ such that } \chi(g) \neq 0 \}.
\]

This subgroup was first introduced by Lewis in [1]. Note that \(V(G) \) is the smallest subgroup of \(G \) such that all nonlinear irreducible characters vanish on \(G \setminus V(G) \). Moreover, \(V(G) \) is a proper subgroup only if \(G \) is solvable (and of course nonabelian). A central series associated with the vanishing off subgroup, defined inductively by \(V_1 = V(G) \), and \(V_i = [V_{i-1}, G] \) for \(i \geq 2 \). Lewis proved in [1] that \(G_{i+1} \leq V_i \leq G_i \), and if \(V_i < G_i \), then \(V_j < G_j \) for all \(j \) such that \(1 \leq j \leq i \). He also proved that if \(V_2 < G_2 \), then there exists a prime \(p \) such that \(G_i/V_i \) is an elementary abelian \(p \)-group for all \(i \geq 1 \). Also, consider the term \(G_i \) as the \(i \)-th term in the lower central series, which is defined by \(G_1 = G, G_2 = G' = [G,G], \) and \(G_i = [G_{i-1}, G] \) for \(i \geq 3 \). Consider \(Z_i \) as the \(i \)-th term in the lower central series, which is defined by \(Z_1 = Z(G) \), and \(Z_i/Z_{i-1} = Z(G/Z_{i-1}) \). For more details about these series see [2, 3].

We showed that if \(G \) be \(C_p \)-group and assume that \(G/Z(G) \) has exponent \(p^n \) for an integer \(n \geq 1 \) and \(Z(G) \) has exponent \(p \). If there exists \(x \in G \setminus V(G) \) such that \(x^{p^i} \not \in V(G) \) for \(i = 0, \ldots, n - 1 \) but \(x^{p^n} \in Z(G) \), then \(|Z(G)| < \sqrt{|G : Z(G)|} \).

Also, we proved that if \(G \) is a \(C_p \)-group, and \(Z(G) < (G'/Z_2) \), then there exists \(a \in (G'/Z_2) \setminus Z(G) \) such that \(a \) is conjugate to all of \(Z(G)a \). Hence, \(|Z(G)| \leq |G : G'Z_2| \).

References
