Three Equations

Submission deadline: April 29th 2020

Solve the following system of equations for x, y and z

\[
\begin{align*}
 x^2 y^2 + x^2 z^2 &= axyz \\
 y^2 z^2 + y^2 x^2 &= bxyz \\
 z^2 x^2 + z^2 y^2 &= cxyz
\end{align*}
\]

where, a, b and c are given constants.

The problem was solved by

- Shubhan Bhatia, *Grade 12, GEMS Modern Academy, Dubai, UAE.*

- Sidharth Hariharan, *IB1, GEMS Modern Academy, Dubai, UAE.*

- Vansh Agarwal, *IB1, GEMS Modern Academy, Dubai, UAE.*

- Emre Karabıyık, *Hacettepe University, Faculty of Medicine, Ankara, Turkey.*

- Hari Kishan, *Department of Mathematics, D.N. College, Meerut, India.*

- Anya Bindra.
Discussion:

\[x^2y^2 + x^2z^2 = axyz \quad (1) \]
\[y^2z^2 + y^2x^2 = bxyz \quad (2) \]
\[z^2x^2 + z^2y^2 = cxyz \quad (3) \]

It is easy to see that if two of the variables are equal to 0, and the remaining one takes any value, then \(x, y, z \) is a solution. Moreover, it is not possible to have a solution where one variable is zero and the other two are non-zero. Therefore we will find solutions assuming each variable is non-zero.

Since \(x \neq 0 \), from (1) we get that

\[x = a \frac{yz}{y^2 + z^2} \quad (4) \]

Substitute (4) in (2). Then, since \(yz \neq 0 \), we get

\[a^2z^2 + (y^2 + z^2)^2 - ca(y^2 + z^2) = 0 \quad (5) \]

Next Substitute (4) in (3). Then, we get

\[y^2 + z^2 = \frac{1}{2}a(b + c - a) \quad (6) \]

Similarly we can get

\[z^2 + x^2 = \frac{1}{2}b(a + c - b) \quad (7) \]
\[x^2 + y^2 = \frac{1}{2}c(a + b - c) \quad (8) \]

From (6) and (7) we get that \(x^2 - y^2 = (a - b)(a + b - c)/2 \). Thus,

\[x^2 = \frac{1}{4}(a + b - c)(a + c - b) \]

Values of \(y \) and \(z \) can be found by substituting \(x^2 \) in (7) and (8).