Opposite Triangles

Submission deadline: April 28th 2021

Let ABCD be a convex quadrilateral and O be the point of intersection of its diagonals. If

 $(\text{Area of } AOD) \cdot (\text{Area of } COB) = 2021$

find

Area of
$$ABO$$
 · (Area of DOC)

Note: Vertices A, B, C, D are labelled clockwise.

The problem was solved by

- Atilla Akkuş, Private Enka Technical Schools, Kocaeli, Turkey.
- Sandupama Gunawardana, Hillwood College, Kandy, Sri Lanka.
- Merdangeldi Bayramov, Turkmen State University, Ashgabat, Turkmenistan.
- Sherif Khaled Ismail, American University of Sharjah, Sharjah, UAE.
- Hari Kishan, D.N. College, Meerut, India.
- Cristian Baeza Miranda, Pontifical Catholic University, Chile.
- Atakan Erdem, Ankara, Turkey.
- Emre Karabıyık, Hacettepe University, Faculty of Medicine, Turkey.

Discussion: Angles $D\hat{O}A$ and $A\hat{O}B$ both cannot be greater than $\pi/2$. Thus assume that $D\hat{O}A \leq \pi/2$, and call it γ . Now it is easy to see that Area of $AOD = \frac{1}{2}|OA| \cdot \sin(\gamma) \cdot |OD|$ and Area of $COB = \frac{1}{2}|OB| \cdot \sin(\gamma) \cdot |OC|$

Similarly we have

Area of $ABO = \frac{1}{2}|OA| \cdot \sin(\gamma) \cdot |OB|$ and Area of $DOC = \frac{1}{2}|OC| \cdot \sin(\gamma) \cdot |OD|$

Thus,

 $(Area of AOD) \cdot (Area of COB) = (Area of ABO) \cdot (Area of DOC)$