Symmetry

Submission deadline: August $28^{\text {th }} 2023$

Solve the system

$$
\begin{aligned}
& 2 x^{2}-4 x y+3 y^{2}=36 \\
& 3 x^{2}-4 x y+2 y^{2}=36
\end{aligned}
$$

The problem was solved by

- Hari Kishan, D.N College, Meerut, India.
- Merdangeldi Bayramov, Turkmenistan.
- K. Sengupta, Calcutta, INDIA.

Discussion:
Taking the difference of the two equation results in $y^{2}=x^{2}$. Hence $y= \pm x$. Letting $y=x$ in the first equation yields $y^{2}=36$. Thus, we get solutions (6 , $6)$ and ($-6,-6$).

Letting $y=-x$, in the first equation results in $y^{2}=4$. Hence we get $(-2,2)$ and ($2,-2$).

Geometric interpretation: The first equation represents an ellipse E_{1}. Notice that the second equation can be obtained by switching x and y. Thus, the second equation represents the reflection of E_{1} on the line $x=y$. Thus, the points of intersection of E_{1} and the line $x=y$, stay fixed and those are $(6,6)$ and $(-6,-6)$. The points of intersection of E_{1} and the line $y=-x$, gets interchanged and those are $(2,-2)$ and $(-2,2)$. See the diagram in the next page.

