Factors and Factorials

Submission deadline: August $28^{\mbox{th}}$ 2021

Describe all	positive integers	n such that	(n-1)! is not	divisible by n .
DOSCITOC an	DOSIGIVE INCECTS	n such mai	116 116 110 110 6	CITATOTO DA 1

The problem was solved by

 \bullet Merdangeldi Bayramov, TSU, Ashgabat, Turkmenistan.

• Ahmet Yüksel Aydın, *Turkey*.

Discussion;

If n is a prime, it is clear that n cannot divide (n-1)! since n does not appear in $1 \times 2 \times 3 \times \cdots \times (n-1)$ as a factor.

Now assume that n is a not a prime. Then, $n = p_1^{n_1} \cdot p_2^{n_2} \cdots p_k^{n_k}$ where each p_i is a prime.

If k > 1, then it is clear that $p_i^{n_i} < n$ for each i. Needless to say, p_1, \dots, p_k are distinct. Thus, each $p_i^{n_i}$ appears as a factor in $1 \times 2 \times 3 \times \dots \times (n-1)$. Thus, n divides (n-1)!

If k = 1, then $n = p_1^{n_1}$. We only need to look at $n_1 > 1$. Clearly $n = p_1 \cdot p_1^{n_1-1}$. If $n_1 > 2$, then p_1 and $p_1^{n_1-1}$ are distinct. Since $p_1 < n$ and $p_1^{n_1-1} < n$, they both appear in $1 \times 2 \times 3 \times \cdots \times (n-1)$, hence n divides (n-1)!

Finally, we only need to look at $n=p_1^2$. If $2p_1 \le n-1$, then both $2p_1$ and p_1 appear in $1 \times 2 \times 3 \times \cdots \times (n-1)$, hence p_1^2 is a factor of (n-1)! Thus, n divides (n-1)! If $2p_1 > n-1$, then $1 > p_1(p_1-2)$, and it easily follows that $p_1 = 2$.

Thus, (n-1)! is not divisible by n if and only if, n=4 or n is a prime.