Squares and Exponents

Submission deadline: June $28^{\mbox{th}}$ 2021

Find all integer solutions of

$$2^x = x^2$$

The problem was solved by

- \bullet Ruben Victor Cohen, Argentina.
- Atilla Akkuş, Private Enka Technical Schools, Kocaeli, Turkey.
- Hakim Bendjenna, University of Larbi Tebessi- Algeria.
- \bullet Hari Kishan, $\ D.N.\ College,\ Meerut,\ India.$
- Mümtaz Ulaş Keskin, Turkey.
- Rohan Mitra, American University of Sharjah, Sharjah, UAE.
- \bullet Merdangeldi Bayramov, Turkmen State University, Ashgabat, Turkmenistan.
- \bullet Mohammed Shehab , American University of Sharjah, Sharjah, UAE.

Discussion:

Since x^2 is even if and only if x is even it is clear that x=2p. Thus $2^{2p}=4p^2$. Therefore,

$$2^{p-1} = p \tag{1}$$

If p > 2, by looking at the binomial expansion of $(1+1)^{p-1}$, it can be concluded that $2^{p-1} > p$. Thus $p \le 2$.

It is easy to see that p=1, and p=2, are solutions of (1). This results in x=2 and x=4 which are solutions of the given equation. Since p can take only two values, x=2 and x=4 are the only solutions.