Integral Roots

Submission deadline: June $28^{\text {th }} 2023$

Suppose that the polynomial

$$
P(x)=a_{0} x^{2023}+a_{1} x^{2022}+\cdots+a_{2022} x+a_{2023}
$$

has integral coefficients. If $P(0)$ and $P(1)$ are odd values, does the equation $P(x)=0$, have integral roots?

The problem was solved by

- Elisaveta Andrushkevich, Southern Federal University, Russia.
- Muhammed Yuksel, Ankara, Turkey.
- Atakan ERDEM, Middle East Technical University, Ankara, Turkey.
- Seth Cohen, Concord, New Hampshire, USA.

Discussion
Since $P(0)=a_{2023}$, it easily follows that a_{2023} is odd. Moreover, since $P(1)=a_{0}+a_{1}+\cdots+a_{2022}+a_{2023}$, and a_{2023} are odd, it is easy to see that $a_{0}+a_{1}+\cdots+a_{2022}$ is even.

Let k be any integer.
If i is a natural number, then $(2 k+1)^{i}$ is odd. Thus, let $2 s_{i}+1=(2 k+1)^{i}$. Then,

$$
P(2 k+1)=2\left(a_{0} s_{0}+\cdots+a_{2022} s_{2022}\right)+\left(a_{0}+\cdots+a_{2022}\right)+a_{2023}
$$

Since both $2\left(a_{0} s_{0}+\cdots+a_{2022} s_{2022}\right),\left(a_{0}+\cdots+a_{2022}\right)$ are even and a_{2023} is odd, it follows that $P(2 k+1) \neq 0$.

Now,

$$
P(2 k)=a_{0} 2^{2023} k^{2023}+\cdots+a_{2022} 2 k+a_{2023}
$$

Since $a_{0} 2^{2023} k^{2023}+\cdots+a_{2022} 2 k$ is even and a_{2023} is odd, it follows that $P(2 k) \neq$ 0.

Thus, $P(x)=0$ has no integral roots.

