Subtract and Divide

Submission deadline: March 29th 2021

Find all positive integers a, b and c such that 1 < a < b < c and

(a-1)(b-1)(c-1) is a divisor of abc-1.

The problem was solved by

• Omar Sonebi, Lycée technique Settat, Casablanca, Morroco.

• Mümtaz Ulaş Keskin, Antalya, Turkey.

Discussion:

It is easy to see that

$$(a-1)(b-1)(c-1) = (abc-1) - [a(b-1) + c(a-1) + b(c-1)]$$

thus,

$$1 = \frac{(abc-1)}{(a-1)(b-1)(c-1)} - \frac{[a(b-1)+c(a-1)+b(c-1)]}{(a-1)(b-1)(c-1)}$$
(1)

Therefore, it is clear that (a-1)(b-1)(c-1) is a divisor of abc-1 if and only if (a-1)(b-1)(c-1) is a divisor of a(b-1) + c(a-1) + b(c-1). Clearly,

$$\frac{[a(b-1)+c(a-1)+b(c-1)]}{(a-1)(b-1)(c-1)} = \frac{a}{(a-1)(c-1)} + \frac{c}{(b-1)(c-1)} + \frac{b}{(a-1)(b-1)}$$

Since $a \ge 2, b \ge 3, c \ge 4$, it follows that $\frac{a}{(a-1)(c-1)} \le \frac{2}{3}, \frac{c}{(c-1)(b-1)} \le \frac{2}{3}$, and $\frac{b}{(b-1)(a-1)} \le \frac{3}{2}$. Hence,

$$\frac{a}{(a-1)(c-1)} + \frac{c}{(b-1)(c-1)} + \frac{b}{(a-1)(b-1)} < 3$$

Let

$$a = \frac{a}{(a-1)(c-1)} + \frac{c}{(b-1)(c-1)} + \frac{b}{(a-1)(b-1)}$$
(2)

Thus, if m is an integer it can only take the values 1 or 2. Next we will consider the two cases.

Case 1: m = 2.

 \overline{m}

First assume that $a \ge 3$. Then, $b \ge 4$ and $c \ge 5$. Hence,

 $a/((a-1)(c-1)) \leq 3/8$, $c/((c-1)(b-1)) \leq 5/12$, and $b/((b-1)(a-1)) \leq 2/3$ Addition of the fractions above results in a value less than 2. Thus $a \geq 3$, is false. Since a > 1, it is clear that the only possible value for a is 2.

Now assume that $b \ge 5$. Then $c \ge 6$. Now we have,

 $a/((a-1)(c-1)) \le 2/5$, $c/((c-1)(b-1)) \le 6/20$ and $b/((b-1)(a-1)) \le 5/4$ The sum of the fractions above again results in a value less than 2, thus it shows that b < 5. Since a = 2, the only possible values for b are 3 or 4.

If b = 4, from (2) it follows that c = 8.

From (2) it can be seen that b = 3 is not possible.

Thus, when m = 2, the only solution is a = 2, b = 4 and c = 8.

Case 2: m = 1.

If m = 1, then from (1) it follows that abc - 1 = 2(a - 1)(b - 1)(c - 1). Thus, abc must be odd, therefore, each of a, b and c must be an odd integer.

If $a \ge 5$, then $b \ge 7$ and $c \ge 9$. Now we have that

 $a/((a-1)(c-1)) \le 5/32$, $c/((c-1)(b-1)) \le 3/16$ and $b/((b-1)(c-1)) \le 7/48$. Sum of the fractions above is less than 1.

Therefore a < 5. Hence the only possible value for a is 3.

Now if $b \ge 7$, then $c \ge 9$, and hence we have

 $b/((b-1)(a-1)) \leq 7/12, c/((c-1)(b-1)) \leq 3/16$ and $a/((a-1)(c-1)) \leq 3/16$ and the fractions above add up to a value less than 1. Hence it is clear that the only possible value for b is 5. Using a = 3, b = 5 in abc-1 = 2(a-1)(b-1)(c-1) we get that c = 15.

Thus, when m = 1, the only solution is a = 3, b = 5 and c = 15.