Multiples of 5

Submission deadline: September 28th 2021

Describe all positive integers n such that $n^5 - n$ is divisible by 5.

The problem was solved by

- Rohan Mitra, *American University of Sharjah, UAE.*

- Mümtaz Ulaş KESKİN, *Erciyes University.*

- Parv Bhadra, *Grade 11, GEMS Modern Academy, Dubai, UAE.*

- Ahmet Yüksel, *Aydın, Turkey.*

- Hari Kishan, *(Ex.) Department of Mathematics, D.N. College, Meerut, India.*

- Atakan Erdem, *Middle East Technical University (METU), Ankara, Turkey.*

- Muhammed YÜKSEL, *Ankara, Turkey.*

- Merdangeldi Bayramov, *Ashgabat, Turkmenistan.*
Discussion:
First assume that \(n = 2k \) for some positive integer \(k \).
It is easy to see that \(n^5 - n = 2k \cdot (2k - 1) \cdot (2k + 1) \cdot (4k^2 + 1) \). Thus, \(n^5 - n = 2k \cdot (2k - 1) \cdot (2k + 1) \cdot (4k^2 - 4 + 5) \). Therefore, \(n^5 - n \) is equal to,
\[
2k \cdot (2k - 1) \cdot (2k + 1) \cdot (2k + 2) \cdot (2k - 2) + 5 \cdot 2k \cdot (2k - 1) \cdot (2k + 1)
\]
In the summation above, the first term is a product of five consecutive integers, hence is divisible by 5. The second term is clearly divisible by 5. Thus, when \(n \) is even, \(n^5 - n \) is divisible by 5.

Next assume that \(n = 2k + 1 \) for some positive integer \(k \). Clearly \(n^5 - n = (2k + 1) \cdot (2k) \cdot (2k + 2) \cdot (4k^2 + 4k + 2) \). Thus
\[
 n^5 - n = (2k + 1) \cdot (2k) \cdot (2k + 2) \cdot ((2k + 3)(2k - 1) + 5)
\]
Therefore,
\[
 n^5 - n = (2k + 1) \cdot (2k) \cdot (2k + 2) \cdot (2k + 3) \cdot (2k - 1) + 5(2k + 1) \cdot (2k) \cdot (2k + 2)
\]
The first term on the right hand side is a product of 5 consecutive integers, therefore is divisible by 5 and second term is clearly divisible by 5. Hence when \(n \) is odd, \(n^5 - n \) is divisible by 5.
Therefore \(n^5 - n \) is divisible by 5 for all integers \(n \).