Let n be a positive integer and $0 < \alpha < \pi/2$. If $x + \frac{1}{x} = 2\cos(\alpha)$, find $x^n + \frac{1}{x^n}$.

The problem was solved by

- Ahmet Yüksel, *Aydın, Turkiye.*
- Richard Blatirmor, *Spain.*
- Gurkan Koray Akpinar, *Aydın, Turkey.*
- Hari Kishan, *D.N. College, Meerut, India.*
- Atakan Erdem, *Middle East Technical University, Ankara, Turkey.*
Discussion.

It is easy to see that \(x^2 - 2x \cos(\alpha) + 1 = 0 \). Solving the quadratic equation yields that \(x = \cos(\alpha) \pm i \sin(\alpha) \). Thus, \(x = e^{i\alpha} \) or \(x = e^{-i\alpha} \). Either root for \(x \) results in \(x^n + \frac{1}{x^n} = e^{ina} + e^{-ina} \). Hence

\[
x^n + \frac{1}{x^n} = 2 \cos(n\alpha)
\]