
Halve the terms
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Prove that for each positive integer n
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Discussion:
We use induction. When n = 1, it is easy to see that each side of the equation

above is equal to one. Now assume that the equation above is true up to n = p.
Let n = p+ 1, and
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The last term above is 1/(2p+1), thus the series above written with more terms
is
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By induction hypothesis the first 2p − 1 terms in the series above are equal to
1/p+ · · ·+ 1/(2p− 1). Thus,

S =
1

p
+

1

p+ 1
+ · · ·+ 1

2p− 1
− 1

2p
+

1

2p+ 1

Therefore

S =
1

p+ 1
+ · · ·+ 1

2p− 1
+

1

2p
+

1

2p+ 1

Since 2p+ 1 = 2(p+ 1)− 1, the assertion is true for n = p+ 1.


