Halve the terms

Submission deadline: April $28^{\text {th }} 2023$

Prove that for each positive integer n

$$
1-\frac{1}{2}+\frac{1}{3}-\cdots+\frac{1}{2 n-1}=\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{2 n-1}
$$

The problem was solved by

- Merdangeldi Bayramov, Ashgabat, Turkmenistan.
- K. Sengupta, Calcutta, India.
- Hari Kishan, D.N. College, Meerut, India.
- Ruben Victor Cohen, Argentina.
- Ahmet Yüksel.

Discussion:
We use induction. When $n=1$, it is easy to see that each side of the equation above is equal to one. Now assume that the equation above is true up to $n=p$. Let $n=p+1$, and

$$
S=1-\frac{1}{2}+\cdots+\frac{1}{2(p+1)-1}
$$

The last term above is $1 /(2 p+1)$, thus the series above written with more terms is

$$
1-\frac{1}{2}+\cdots+\frac{1}{2 p-1}-\frac{1}{2 p}+\frac{1}{2 p+1}
$$

By induction hypothesis the first $2 p-1$ terms in the series above are equal to $1 / p+\cdots+1 /(2 p-1)$. Thus,

$$
S=\frac{1}{p}+\frac{1}{p+1}+\cdots+\frac{1}{2 p-1}-\frac{1}{2 p}+\frac{1}{2 p+1}
$$

Therefore

$$
S=\frac{1}{p+1}+\cdots+\frac{1}{2 p-1}+\frac{1}{2 p}+\frac{1}{2 p+1}
$$

Since $2 p+1=2(p+1)-1$, the assertion is true for $n=p+1$.

