Halve the terms

Submission deadline: April 28th 2023

Prove that for each positive integer n

$$1 - \frac{1}{2} + \frac{1}{3} - \cdots + \frac{1}{2n-1} = \frac{1}{n} + \frac{1}{n+1} + \cdots + \frac{1}{2n-1}$$

The problem was solved by

- Merdangeldi Bayramov, Ashgabat, Turkmenistan.
- K. Sengupta, Calcutta, India.
- Hari Kishan, D.N. College, Meerut, India.
- Ruben Victor Cohen, Argentina.
- Ahmet Yüksel.
Discussion:
We use induction. When \(n = 1 \), it is easy to see that each side of the equation above is equal to one. Now assume that the equation above is true up to \(n = p \). Let \(n = p + 1 \), and

\[S = 1 - \frac{1}{2} + \cdots + \frac{1}{2(p+1) - 1} \]

The last term above is \(1/(2p+1) \), thus the series above written with more terms is

\[1 - \frac{1}{2} + \cdots + \frac{1}{2p - 1} - \frac{1}{2p} + \frac{1}{2p + 1} \]

By induction hypothesis the first \(2p - 1 \) terms in the series above are equal to \(1/p + \cdots + 1/(2p - 1) \). Thus,

\[S = \frac{1}{p} + \frac{1}{p+1} + \cdots + \frac{1}{2p - 1} - \frac{1}{2p} + \frac{1}{2p + 1} \]

Therefore

\[S = \frac{1}{p+1} + \cdots + \frac{1}{2p - 1} + \frac{1}{2p} + \frac{1}{2p + 1} \]

Since \(2p + 1 = 2(p + 1) - 1 \), the assertion is true for \(n = p + 1 \).