Sum of Choices

Submission deadline: December $29^{\text {th }} 2022$
If n is a natural number, find

$$
\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\cdots+n\binom{n}{n}
$$

The problem was solved by

- Hari Kishan, Department of Mathematics, D.N. College, Meerut, India.
- K. Sengupta, Calcutta, India.
- Pouyan Nikrou.
- Ruben Victor Cohen, Argentina.
- Muhammed YÜKSEL, Hacettepe University, Ankara, Turkey.
- Ferdi, Hasanuddin University, Indonesia.
- Elizaveta Andrushkevich, Southern Federal University, Russia.
- Atakan Erdem, Middle East Technical University, Ankara, Turkey.
- Merdangeldi Bayramov, Turkministan.

Discussion

From Binomial theorem

$$
(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\cdots+\binom{n}{n} x^{n}
$$

By differentiating the above we get

$$
n(1+x)^{n-1}=\binom{n}{1}+2\binom{n}{2} x+3\binom{n}{3} x^{2}+\cdots+n\binom{n}{n} x^{n-1}
$$

Let $x=1$ and we get

$$
n 2^{n-1}=\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\cdots+n\binom{n}{n}
$$

