Multiplicativity
Submission deadline: February 27th 2023

Let \(f \) be a function defined on positive integers that takes integer values with the following properties.

1. \(f(2) = 2 \)
2. \(f(mn) = f(m)f(n) \) for all \(m \) and \(n \)
3. \(f(m) > f(n) \) whenever \(m > n \).

Find \(f(n) \) for \(n = 1, 2, \cdots \)

The problem was solved by
• K. Sengupta, Calcutta, India.
• Merdangeldi Bayramov, Turkministan.
• Aadi Sinha, Delhi Private School, Grade 12 A, Dubai.
• Ahmet.
Discussion:

Since $f(2) = 2$, from the condition $f(mn) = f(m)f(n)$ it follows that $f(2^k) = 2^k$, for all natural numbers k. Now consider all the integers $r_1, r_2, \ldots, r_{2^k-1}$ between 2^k and 2^{k+1}, labelled such that $r_i = 2^k + i$. Then,

$$2^k < r_1 < r_2 < \cdots < r_{2^k-1} < 2^{k+1}$$

and hence,

$$2^k < f(r_1) < f(r_2) < \cdots < f(r_{2^k-1}) < 2^{k+1}$$

Since $f(r_i)$ is a natural number for each i, it easily follows from above that $f(r_i) = r_i$.

Letting $m = 2$ and $n = 1$ in the condition $f(mn) = f(m)f(n)$ we get that $f(1) = 1$. Thus $f(n) = n$ for all natural numbers.