Multiplicativity

Submission deadline: February $27^{\text {th }} 2023$
Let f be a function defined on positive integers that takes integer values with the following properties.

1. $f(2)=2$
2. $f(m n)=f(m) f(n)$ for all m and n
3. $f(m)>f(n)$ whenever $m>n$.

Find $f(n)$ for $n=1,2, \cdots$

The problem was solved by

- K. Sengupta, Calcutta, India.
- Merdangeldi Bayramov, Turkministan.
- Aadi Sinha, Delhi Private School, Grade 12 A, Dubai.
- Ahmet.

Discussion:
Since $f(2)=2$, from the condition $f(m n)=f(m) f(n)$ it follows that $f\left(2^{k}\right)=2^{k}$, for all natural numbers k. Now consider all the integers $r_{1}, r_{2}, \cdots, r_{2^{k}-1}$ between 2^{k} and 2^{k+1}, labelled such that $r_{i}=2^{k}+i$. Then,

$$
2^{k}<r_{1}<r_{2}<\cdots<r_{2^{k}-1}<2^{k+1}
$$

and hence,

$$
2^{k}<f\left(r_{1}\right)<f\left(r_{2}\right)<\cdots<f\left(r_{2^{k}-1}\right)<2^{k+1}
$$

Since $f\left(r_{i}\right)$ is a natural number for each i, it easily follows from above that $f\left(r_{i}\right)=r_{i}$.

Letting $m=2$ and $n=1$ in the condition $f(m n)=f(m) f(n)$ we get that $f(1)=1$. Thus $f(n)=n$ for all natural numbers.

