Repetition

Submission deadline: July $28^{\text {th }} 2023$

Determine the function $f(n)$ such that the $n^{t h}$ term of the sequence

$$
1,2,2,3,3,3,4,4,4,4, \cdots
$$

is given by $f(n)$.

The problem was solved by

- Merdangeldi Bayramov, Turkmenistan.
- Shaher EBRAHEEM, Egypt
- Teawoo Kim, St. Paul's School, Concord, NH, USA.
- Ruben Victor Cohen, Argentina.

Let $f(n)=k$. Then we have

$$
1,2,2, \cdots,(k-1),(k-1), \cdots,(k-1), k, \cdots, k,(k+1),(k+1), \cdots
$$

and

$$
\frac{1}{2} k(k-1) \leq n
$$

Solving the equation $k^{2}-k+2=2 n$, gives us the positive root $\alpha=\frac{1}{2}(1+\sqrt{8 n-7})$.
It is not difficult to see that the polynomial $p(x)=x^{2}-x+2-2 n>0$ if $x>\alpha$ therefore the desired value of $f(n)$ is the integer part of $\frac{1}{2}(1+\sqrt{8 n-7})$.

