Repetition

Submission deadline: July 28th 2023

Determine the function f(n) such that the n^{th} term of the sequence

 $1, 2, 2, 3, 3, 3, 4, 4, 4, 4, \dots$

is given by f(n).

The problem was solved by

- Merdangeldi Bayramov, *Turkmenistan.*
- \bullet Shaher EBRAHEEM, Egypt.
- Teawoo Kim, St. Paul's School, Concord, NH, USA.
- Ruben Victor Cohen, Argentina.

Let f(n) = k. Then we have

$$1, 2, 2, \cdots, (k-1), (k-1), \cdots, (k-1), k, \cdots, k, (k+1), (k+1), \cdots$$

and

$$\frac{1}{2}k(k-1) \le n$$

Solving the equation $k^2 - k + 2 = 2n$, gives us the positive root $\alpha = \frac{1}{2}(1 + \sqrt{8n - 7})$. It is not difficult to see that the polynomial $p(x) = x^2 - x + 2 - 2n > 0$ if $x > \alpha$ therefore the desired value of f(n) is the integer part of $\frac{1}{2}(1 + \sqrt{8n - 7})$.