Combinations

Submission deadline: June 29^{th} 2022

For
$$0 \le k \le n$$
, let ${}^{n}C_{k} = \frac{n!}{k! \cdot (n-k)!}$. Find
 ${}^{n}C_{k} + {}^{n+1}C_{k} + \dots + {}^{n+m}C_{k}$

The problem was solved byIbrahim Mohammed, American University of sharjah, UAE.

• Hari Kishan, D.N. College, Meerut, India.

• Dilmini Mannaperuma, Hillwood College, Kandy, Sri Lanka.

Discussion. Note that

$$(1+x)^n = \sum_{j=0}^n {}^nC_j x^j$$

Let $f(x) = (1+x)^n + (1+x)^{n+1} + \dots + (1+x)^{n+m}$. Then it is clear that ${}^{n}C_k + {}^{n+1}C_k + \dots + {}^{n+m}C_k$ is the coefficient of x^k term of f(x). Since f is a geometric series it is easy to see that

$$f(x) = \frac{1}{x}((1+x)^{n+m+1} - (1+x)^n)$$

If k < n, the coefficient of x^k , is $^{n+m+1}C_{k+1} - ^n C_{k+1}$. If k = n, then the coefficient is $^{n+m+1}C_{k+1}$.