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Let a and b be fixed positive integers. Find the general solution of the
recurrence relation

xn+1 = xn + a+
√

b2 + 4axn, n = 0, 1, 2, · · ·

where x0 = 0.
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Discussion;
A straight forward computation of the first few terms suggest that xn =

n2a+ nb.
Now assume that xn = n2a + nb for n = 1, · · · , k. Then xk+1 = k2a +

kb + a +
√
b2 + 4a(k2a+ kb), and further simplification yields that xk+1 =

(k2 + 2k + 1)a + (k + 1)b. Thus, from the principle of mathematical induction
it follows that xn = n2a+ nb is true for all n.


