Divisible Difference

Submission deadline: March 27th 2023

Let n be a natural number greater than 1. Further let a_1, \dots, a_n be a sequence of any n distinct natural numbers. Prove that in the sequence above, either there is a number that is divisible by n, or there are two distinct numbers whose difference is divisible by n.

The problem was solved by

• K. Sengupta, Calcutta, India.

• Pouyan Nikrou

• Rohan Mitra, American University of Sharjah, UAE.

• Djamila Ait Elhadi, American University of Sharjah, UAE.

Discussion: Clearly

$$a_i = nk_i + r_i, \ 0 \le r_i \le n - 1$$

for $i = 1, \cdots, n$.

If $r_j = 0$, for some j, then a_j is divisible by n. If $r_i \neq 0$, for all i, then there are not more than n-1 distinct values for all the remainder terms. However, there are n numbers in the sequence, hence there are at least two terms a_m and a_l with $r_m = r_l$. It easily follows that $a_m - a_l$ is divisible by n.