Let f be a function defined on all real numbers such that for all x, we have $f(x + 5) \geq f(x) + 5$, and $f(x + 1) \leq f(x) + 1$. If $f(1) = 1$, find $f(2022)$.

The problem was solved by
- Gurkan Koray Akpinar, Aydin, Turkey.
- Hari Kishan, D.N. College, Meerut, India.
- Ahmet Yüksel, Aydin, Turkey.
Discussion.

Since \(f(x + 1) - f(x) \leq 1 \), we get \(\sum_{j=0}^{4} f(x + j + 1) - f(x + j) \leq 5 \). Thus \(f(x + 5) \leq f(x) + 5 \). Since \(f(x + 5) \geq f(x) + 5 \), it is easy to see that \(f(x + 5) = f(x) + 5 \). If \(f(x_0 + 1) < f(x_0) + 1 \), for some \(x_0 \), then from an argument similar to the one above it follows that \(f(x_0 + 5) < f(x_0) + 5 \). Thus we have \(f(x + 1) = f(x) + 1 \) for all \(x \). Since \(f(1) = 1 \), we get that \(f(2) = 2, f(3) = 3, \ldots \) and thus \(f(2022) = 2022 \).