Recursive

Submission deadline: March 29^{th} 2022

Let f be a function defined on all real numbers such that for all x, we have $f(x+5) \ge f(x) + 5$, and $f(x+1) \le f(x) + 1$. If f(1) = 1, find f(2022).

The problem was solved by • Gurkan Koray Akpinar, *Aydin, Turkey.*

• Hari Kishan, D.N. College, Meerut, India.

• Ahmet Yüksel, Aydın, Turkey.

Discussion.

Discussion. Since $f(x+1) - f(x) \le 1$, we get $\sum_{j=0}^{4} f(x+j+1) - f(x+j) \le 5$. Thus $f(x+5) \le f(x) + 5$. Since $f(x+5) \ge f(x) + 5$, it is easy to see that f(x+5) = f(x) + 5. If $f(x_0+1) < f(x_0) + 1$, for some x_0 , then from an argument similar to the one above it follows that $f(x+5) \le f(x) + 5$. Thus we have similar to the one above it follows that $f(x_0 + 5) < f(x_0) + 5$. Thus we have f(x+1) = f(x) + 1 for all x. Since f(1) = 1, we get that $f(2) = 2, f(3) = 3, \cdots$ and thus f(2022) = 2022.