Squared Choices

Submission deadline: May $28^{\text {th }} 2023$

Denote $\frac{n!}{k!(n-k)!}$ by $\binom{n}{k}$ where $k \leq n$ and both are natural numbers. Evaluate

$$
\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\cdots+\binom{n}{n}^{2}
$$

The problem was solved by

- Elisaveta Andrushkevich, Southern Federal University, Russia.
- Merdangeldi Bayramov, Ashgabat, Turkmenistan.
- K. Sengupta, Calcutta, India.
- Hari Kishan, D.N. College, Meerut, India.
- Ruben Victor Cohen, Argentina.

Discussion:
Since

$$
(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n} x^{n}
$$

and

$$
(1+y)^{n}=\binom{n}{0}+\binom{n}{1} y+\binom{n}{2} y^{2}+\cdots+\binom{n}{n} y^{n}
$$

it is easy to see that

$$
(1+x)^{n}(1+y)^{n}=\binom{n}{0}^{2}+x y\binom{n}{1}^{2}+\cdots+x^{n} y^{n}\binom{n}{n}^{2}+\sum_{p \neq q} x^{p} y^{q}\binom{n}{p}\binom{n}{q}
$$

Let $y=1 / x$ to get

$$
(1+x)^{n} \frac{(1+x)^{n}}{x^{n}}=\binom{n}{0}^{2}+\binom{n}{1}^{2}+\cdots+\binom{n}{n}^{2}+\sum_{p \neq q} x^{p-q}\binom{n}{p}\binom{n}{q}
$$

Thus,

$$
(1+x)^{2 n}=x^{n}\left[\binom{n}{0}^{2}+\binom{n}{1}^{2}+\cdots+\binom{n}{n}^{2}\right]+\sum_{p \neq q} x^{n+p-q}\binom{n}{p}\binom{n}{q}
$$

Now, by comparing the coefficients of x^{n} in each side of the equation above it follows that

$$
\binom{2 n}{n}=\binom{n}{0}^{2}+\binom{n}{1}^{2}+\cdots+\binom{n}{n}^{2}
$$

