Remainder

Submission deadline: October $29^{\text {th }} 2022$

Find the remainder of the division of the polynomial

$$
x+x^{9}+x^{25}+x^{49}+\cdots+x^{99^{2}}
$$

by $x^{3}-x$.

The problem was solved by

- Atakan Erdem, Middle East Technical University, Ankara, Turkey.
- Kaustuv Sengupta, Calcutta, India.

Discussion:
Let $P(x)$ be the given polynomial. Since the remainder term is at most a degree 2 polynomial we have

$$
P(x)=\left(x^{3}-x\right) Q(x)+\left(a x^{2}+b x+c\right)
$$

Let $x=0$. Then it can be concluded that $c=0$. Letting $x=1$, yields that $50=a+b$, and $x=-1$, results in $-50=a-b$. By solving the two equations above we see that $a=0$ and $b=50$. Thus the remainder is $50 x$.

