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Prove that for m = 0, 1, 2, · · ·

Sm(k) = 1 + 22m+1 + · · ·+ k2m+1

is a polynomial in k(k + 1).
We did not receive any correct solutions.



Discussion.
We use induction. If m = 0, then S0(k) = k(k + 1)/2. Assume that Sm(k)

is a polynomial in k(k + 1) up to m− 1. We have that
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where 2s+ 1 = m+ 1, if m+ 1 is odd and 2s+ 1 = m, if m+ 1 is even. Thus,
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Therefore,
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If an = (n(n+ 1))m+1 − (n(n− 1))m+1, then
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It is easy to see that
∑k

n=1 an = (k(k + 1))m+1. Hence we have
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Since Sm−p(k) is a polynomial for 1 ≤ p ≤ s, the desired result follows from
mathematical induction.


