Seven

Submission deadline: October $31^{\text {st }} 2018$
Find the number of positive integers x that is less than or equal to 10,000 such that $2^{x}-x^{2}$ is not divisible by 7 .

The problem was solved (using some computer software) by

- Daram Varam, American University of Sharjah, UAE.

Discussion: Clearly

$$
x=7 n+m, 0 \leq m \leq 6 .
$$

We will analyze the divisibility for each value of m.
Notice that $10,000=7 \times 1428+4$.
If 7 divides x, then it divides x^{2} and hence 7 does not divide $2^{x}-x^{2}$.

$$
\begin{equation*}
\text { Thus there are } 1428 \text { values when } m=0 \text {. } \tag{1}
\end{equation*}
$$

Now we look at $1 \leq m \leq 6$. It is easy to see that

$$
2^{x}-x^{2}=\left(2^{7 n+m}-m^{2}\right)-7\left(7 n^{2}+2 n m\right)
$$

Thus, it is easy to see that 7 divides $2^{x}-x^{2}$ if and only if 7 divides $2^{7 n+m}-m^{2}$. We further write

$$
2^{7 n+m}-m^{2}=2^{7 n}\left(2^{m}-m^{2}\right)+m^{2}\left(2^{7 n}-1\right)
$$

It is easy to see that 7 divides $2^{m}-m^{2}$ when $m=2,4,5,6$. And 7 does not divide $2^{m}-m^{2}$ when $m=1,3$. Thus, we need to look at the divisibility of $2^{7 n}-1$ by 7 . If n is a multiple of 3 , then $2^{7 n}-1$ has the factor $2^{3}-1$. When n is not a multiple of 3 , it is easy to see that 7 does not divide $2^{7 n}-1$. For each $m=2,4,5,6$ there are 476 multiples of 3 under 10,000 . Thus

$$
\begin{equation*}
\text { There are } 4 \times(1428-476) \text { values when } m \text { is } 2,4,5 \text { or } 6 \text {. } \tag{2}
\end{equation*}
$$

A similar argument shows that

$$
\begin{equation*}
\text { There are } 2 \times 953 \text { values for } m=1 \text { or } 2 \text {. } \tag{3}
\end{equation*}
$$

Combining the values in (1), (2) and (3) it follows that there are 7142 values.

