Almost a Square

Submission deadline: July 31st 2019

Evaluate

$$\sum_{k=1}^{2019} \frac{k}{k^4 + k^2 + 1}$$

The problem was solved by

- Ong See Hai, Year 11, Hwa Chong Institution, Singapore.

- Ruben Victor Cohen, Argentina.

- Sheikh Abdul Raheem Ali, American University of Sharjah, UAE.

- Mohammed Kharroub, American University of Sharjah, UAE.
Discussion
Since \(k^4 + k^2 + 1 = (k^2 + 1)^2 - k^2 \) we have that

\[
\frac{k}{k^4 + k^2 + 1} = \frac{1}{2} \left(\frac{1}{k(k - 1) + 1} - \frac{1}{k(k + 1) + 1} \right)
\]

Thus

\[
\sum_{k=1}^{2019} \frac{k}{k^4 + k^2 + 1} = \frac{1}{2} \left(1 - \frac{1}{2019 \cdot 2020 + 1} \right)
\]