Almost a Square
 Submission deadline: July $31^{\text {st }} 2019$

Evaluate

$$
\sum_{k=1}^{2019} \frac{k}{k^{4}+k^{2}+1}
$$

The problem was solved by

- Ong See Hai, Year 11, Hwa Chong Institution, Singapore.
- Ruben Victor Cohen, Argentina.
- Sheikh Abdul Raheem Ali, American University of Sharjah, UAE.
- Mohammed Kharroub, American University of Sharjah, UAE.

Discussion
Since $k^{4}+k^{2}+1=\left(k^{2}+1\right)^{2}-k^{2}$ we have that

$$
\frac{k}{k^{4}+k^{2}+1}=\frac{1}{2}\left(\frac{1}{k(k-1)+1}-\frac{1}{k(k+1)+1}\right)
$$

Thus

$$
\sum_{k=1}^{2019} \frac{k}{k^{4}+k^{2}+1}=\frac{1}{2}\left(1-\frac{1}{2019 \cdot 2020+1}\right)
$$

