MATH PLACEMENT TEST FOR ENGINEERING AND ARCHITECTURE SAMPLE TEST#3

THIS SAMPLE PLACEMENT TEST IS ONLY FOR

Architecture/Interior Design majors Computer Science majors All Engineering majors Environmental Science/Biology/Chemistry majors Physics Majors Mathematics majors

INSTRUCTIONS:

The test consists of 30 multiple-choice questions.
All types of calculators are NOT allowed
Duration of the exam is 90 minutes (around three minutes per question).

1. Factor completely the following Expression:

$$(x-9)(x+6)^2 - (x-9)^2(x+6)$$

A.
$$-3(x-9)(x-6)$$

B.
$$54(x-9)(x+6)$$

C.
$$15(x-9)(x+6)$$

D.
$$15(9-x)(x+6)$$

- E. None of the above
- 2. Perform the following operation assuming that x, y and z are positive real numbers. Write the answer using positive exponents only:

$$\left(\frac{y^{10}z^4}{x^2}\right)^{-\frac{10}{3}}$$

A.
$$\frac{x^{\frac{20}{3}}z^{\frac{40}{3}}}{y^{\frac{100}{3}}}$$

B.
$$\frac{x^{\frac{20}{3}}}{z^{\frac{40}{3}}y^{\frac{100}{3}}}$$

C.
$$\frac{y^{\frac{100}{3}}z^{\frac{40}{3}}}{x^{\frac{20}{3}}}$$

D.
$$x^{\frac{20}{3}} y^{\frac{100}{3}} z^{\frac{40}{3}}$$

- E. None of the above
- 3. Simplify the following radical expression:

$$\sqrt[3]{16x^2y} \cdot \sqrt[3]{2x^2y}$$

A.
$$2y \sqrt[3]{4x}$$

B.
$$2\sqrt[3]{4x^2y}$$

C.
$$2y \sqrt[3]{4x^2}$$

D.
$$2x \sqrt[3]{4xy^2}$$

4. Rationalize the denominator of the following expression and simplify:

$$\frac{5 - \sqrt{x}}{5 + \sqrt{x}}$$

$$A. \ \frac{5 - 10\sqrt{x}}{25 - x}$$

B.
$$\frac{25 - 10x + x^2}{5 - x}$$

C.
$$\frac{25 - 10\sqrt{x} + x}{25 - x}$$

D.
$$\frac{25 + 10\sqrt{x} + x}{25 - x}$$

- E. None of the above
- 5. Perform and simplify the following operation:

$$\frac{x^2 - 2x - 8}{x^3 + 2x^2} \times \frac{x^2 + x}{x^2 - 3x - 4}$$

$$A. \ \frac{x-2}{x(x+2)}$$

C.
$$\frac{1}{x}$$

D.
$$\frac{2x+7}{(x^3+1)(3x+4)}$$

- E. None of the above
- 6. Perform and simplify the following operation:

$$\frac{3}{x+2} - \frac{2x+18}{x^2+11x+18}$$

A.
$$\frac{x + 24}{x^2 + 11x + 18}$$

B.
$$\frac{x - 16}{x^2 + 11x + 18}$$

C.
$$\frac{1}{x-2}$$

$$D. \ \frac{1}{x+2}$$

7. Simplify the following complex fraction:

$$\frac{x - \frac{x}{x+3}}{x+2}$$

- A. $\frac{x}{x-3}$
- B. *x*
- C. $\frac{x}{x+3}$
- D. $\frac{x}{x+2}$
- E. None of the above
- 8. Evaluate the following expression and write your answer in the form a + ib:

$$\frac{6+18i}{3i-1}$$

- A. $\frac{24 18i}{5}$
- B. $\frac{-12 + 9i}{5}$
- C. $\frac{30 18i}{5}$
- D. $\frac{-24 + 18i}{5}$
- E. None of the above
- 9. Solve the linear equation:

$$(x-7) - (x+4) = 4x$$

- A. $x = -\frac{11}{2}$
- B. $x = -\frac{11}{4}$
- C. $x = \frac{11}{4}$
- D. $x = -\frac{3}{4}$
- E. None of the above

10. Solve the following equation:

$$|3 - 4x| + 8 = 12$$

A.
$$x = \frac{1}{4}$$
, $x = -\frac{7}{4}$

B.
$$x = -\frac{23}{4}$$

C.
$$x = \frac{23}{4}$$

D.
$$x = -\frac{1}{4}$$
, $x = \frac{7}{4}$

- E. None of the above
- 11. Solve the following quadratic equation:

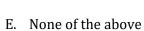
$$4x^2 = -16x - 7$$

A.
$$x = -\frac{1}{2}$$
, $x = -\frac{7}{2}$

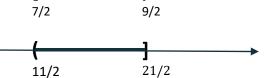
B.
$$x = -\frac{1}{4}, x = 4$$

C.
$$x = \frac{1}{2}, x = \frac{7}{2}$$

- D. No real solution
- E. None of the above
- 12. Solve the following inequality, write your answer in Interval notation and graph it:


$$\frac{1}{4} < \frac{2x - 5}{8} \le \frac{1}{2}$$

A.
$$\left[\frac{7}{2}, \frac{9}{2}\right]$$



$$D. \left(\frac{11}{2}, \frac{21}{2}\right]$$

7/2 9/2

13. Solve the following inequality and write your answer in Interval notation:

$$\frac{x}{x+1} > 3x$$

$$A.\left(-1,-\frac{2}{3}\right)\cup\left(\ 0,\infty\right)$$

B.
$$(-\infty, -1] \cup [-\frac{3}{2}, 0)$$

C.
$$(-\infty, -1) \cup (-\frac{2}{3}, 0)$$

- D. $(-\infty, \infty)$
- E. None of the above
- 14. Write the equation of the line with x –intercept at -3 and y –intercept at 5:

A.
$$5x - 3y = -30$$

B.
$$5x - 3y = 24$$

C.
$$3x - 5y = -15$$

D.
$$5x - 3y = -15$$

- E. None of the above
- 15. Write the equation of the line passing through the points (2, -3) and perpendicular to the line passing through the points (3, 5) and (-1, -5)

A.
$$y = -\frac{2}{5}x - \frac{11}{2}$$

B.
$$y = -\frac{2}{5}x + 5$$

C.
$$y = \frac{5}{2}x - 8$$

D.
$$y = -\frac{2}{5}x + \frac{4}{5}$$

- E. None of the above
- 16. Determine whether the equation below defines y as a function of x:

$$x + 2y^2 = 3$$

17. Find the domain of the following function:

$$f(x) = \frac{\sqrt{x}}{(x-11)(x-5)}$$

- A. $[0,5) \cup (5,11) \cup (11,\infty)$
- B. $(0,5) \cup (5,11) \cup (11,\infty)$
- C. [0,∞)
- D. $(-\infty, \infty)$
- E. None of the above
- 18. Write the following quadratic function in vertex form and find its maximum or minimum value:

$$f(x) = -x^2 - 4x + 3$$

- A. $-(x+2)^2 + 7$, Minimum value f(-2) = 7
- B. $-(x + 2)^2 + 7$, Maximum value f(-2) = 7
- C. $-(x-2)^2 + 7$, Minimum value f(-2) = 7
- D. $-(x-7)^2 2$, Maximum value f(7) = -74
- E. None of the above
- 19. Find the inverse of the following function:

$$f(x) = \frac{2-7x}{9-5x}$$

$$A. f^{-1}(x) = \frac{2 - 9x}{5x - 7}$$

B.
$$f^{-1}(x) = \frac{9x - 2}{5x - 7}$$

C.
$$f^{-1}(x) = \frac{2 - 9x}{5x + 7}$$

D.
$$f^{-1}(x) = \frac{2+9x}{5x+7}$$

20. Write the following expression in Logarithmic form (do not solve):

$$e^{x+2} = 0.2y$$

- A. $x + 2 = \ln(0.2 + y)$
- B. $x + 2 = \log(0.2y)$
- C. $x + 2 = \ln(0.2y)$
- D. $x + 2 = e^{0.2}$
- E. None of the above
- 21. Find the domain of the following function:

$$f(x) = \ln(x^2 - 16)$$

- A. All real numbers
- B. All real numbers x such that $x \neq \pm 4$
- C. All real numbers x such that x > 4 or x < -4
- D. All real numbers x such that -4 < x < 4
- E. None of the above
- 22. Write the following expression as a single log:

$$\ln(6) - 5\ln(x) + 9\ln(x^2 + 9)$$

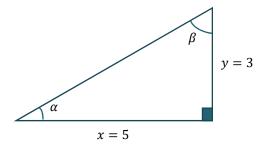
- $A. \ln\left(\frac{6(x^2+9)^9}{x^5}\right)$
- B. $\ln(6(x^2+9)^9) x^5$
- C. $\ln(30x(x^2-9)^9)$
- D. $\ln \left(\frac{x^5}{6(x^2+9)^9} \right)$
- E. None of the above
- 23. Solve the following logarithmic equation:

$$log_2(2x) = log_2(3) + log_2(x - 5)$$

- A. x = 3
- B. x = 15
- C. x = -3
- D. x = -15
- E. None of the above

24. Solve the following Exponential Equation:

$$x^3 \times 9^x - 9^x = 0$$


A.
$$x = -1$$

B.
$$x = 0$$

C.
$$x = 1$$

D.
$$x = 3$$

- E. None of the above
- 25. Given the right angled triangle below, find $sin(\alpha)$ and $cos(\beta)$ if x = 5 and y = 3

A.
$$\sin \alpha = \frac{3}{\sqrt{34}}$$
, $\cos \beta = \frac{3}{\sqrt{34}}$
B. $\sin \alpha = \frac{5}{\sqrt{34}}$, $\cos \beta = \frac{3}{\sqrt{34}}$
C. $\sin \alpha = \frac{3}{\sqrt{34}}$, $\cos \beta = \frac{5}{\sqrt{34}}$
D. $\sin \alpha = \frac{5}{\sqrt{34}}$, $\cos \beta = \frac{5}{\sqrt{34}}$

B.
$$\sin \alpha = \frac{5}{\sqrt{34}}$$
, $\cos \beta = \frac{3}{\sqrt{34}}$

C.
$$\sin \alpha = \frac{3}{\sqrt{34}}$$
, $\cos \beta = \frac{5}{\sqrt{34}}$

D.
$$\sin \alpha = \frac{5}{\sqrt{34}}$$
, $\cos \beta = \frac{5}{\sqrt{34}}$

- E. None of the above
- 26. Simplify the following trigonometric expression to its lowest form:

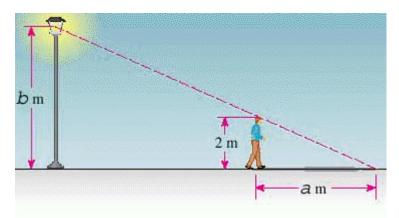
$$\frac{\csc x - \cot x}{\sec x - 1}$$

A.
$$\cot x$$

B.
$$\tan x$$

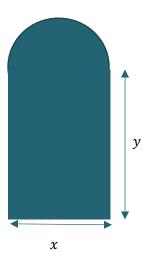
C.
$$\sec x$$

27. Find all the solutions of the following trigonometric equation in the interval $[0, \pi]$:


 $\tan x + \sec x = 1$

- A. $x = \frac{\pi}{4}$
- B. $x = 5\frac{\pi}{4}$
- C. x = 0
- D. x = -1
- E. None of the above
- 28. The height of a punted object is given by

$$h(x) = -\frac{1}{64}x^2 + \frac{21}{32}x + 3$$


where *x* is the horizontal distance in feet from the point where the object is punted. How far, horizontally, is the object from where it started when it is at its maximum height?

- A. 45 ft
- B. 26ft
- C. 21ft
- D. 24ft
- E. None of the above
- 29. A man is walking away from a lamppost with a light source b=6 meters above the ground. If the man is 2 meters tall, how far from the lamppost is he when his shadow is a=8 meters long? [Hint: Use similar triangles.]

- A. 15 meters
- B. 24 meters
- C. 16 meters
- D. 14 meters
- E. 17 meters

30. A Norman window has the shape of a rectangle surmounted by a semicircle as in the figure below. If the perimeter of the window is 10m, express the area, A, as a function of the width, x, of the window.

A.
$$A(x) = \frac{20x - 2x^2}{4}$$

B.
$$A(x) = \frac{80x - 3\pi x^2 - 7x^2}{8}$$

C.
$$A(x) = \frac{40x - 3\pi x^2 + 7x^2}{8}$$

D.
$$A(x) = \frac{40x - 4x^2 - \pi x^2}{8}$$

ANSWER KEY

Question#	Answer	Question#	Answer
1	С	16	A
2	В	17	A
3	D	18	В
4	С	19	В
5	С	20	С
6	D	21	С
7	С	22	A
8	A	23	В
9	В	24	С
10	D	25	A
11	A	26	Α
12	В	27	С
13	С	28	С
14	A	29	С
15	С	30	D