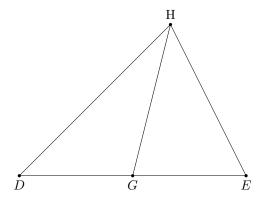
Bisector

Submission deadline: December $28^{\mbox{th}}$ 2023

Let a,b be lengths of two sides of a triangle and assume that the length of the remaining side is 2023. Further let d be the length of the bisector of the angle opposite to the side with length 2023, terminated on the side. Express d using a and b.

The problem was solved by
• Arda Karahan, Trabzon Science High School, Turkey.
\bullet Ievgen Murzak, $\textit{Ukraine}.$
• Mümtaz Ulaş Keskin, Erciyes University HUBF, Turkey.
• Chirila Ionut-Zaharia.
• Muhammed YÜKSEL.
\bullet Merdangeldi Bayramov, $\textit{Turkmenistan}.$
• Hari Kishan, Department of Mathematics D.N. College, Meerut, India.

Discussion:



Let
$$a = |HD|, b = |HE|, d = |HG|, c_1 = |DG|$$
 and $c_2 = |GE|$. Then,

$$\frac{c_1}{c_2} = \frac{a}{b}$$
 and $c_1 + c_2 = 2023$.

Solving the two equations above we get, $c_1 = \frac{2023a}{a+b}$ and $c_2 = \frac{2023b}{a+b}$. Denote the angle DHG by α . Using the Law of Cosines we get,

$$c_1^2=a^2+d^2-2ad\cos(\alpha)$$
 and $c_2^2=b^2+d^2-2bd\cos(\alpha)$

Solve each of the equations above for $d\cos(\alpha)$ and it is easy to see that

$$\frac{c_1^2 - a^2 - d^2}{a} = \frac{c_2^2 - b^2 - d^2}{b}$$

Solve the equation above for d^2 to obtain

$$d^2 = ab \left(1 - \frac{2023^2}{(a+b)^2} \right)$$