Bisector

Submission deadline: December $28^{\text {th }} 2023$

Let a, b be lengths of two sides of a triangle and assume that the length of the remaining side is 2023 . Further let d be the length of the bisector of the angle opposite to the side with length 2023, terminated on the side. Express d using a and b.

The problem was solved by

- Arda Karahan, Trabzon Science High School, Turkey.
- Ievgen Murzak, Ukraine.
- Mümtaz Ulaş Keskin, Erciyes University HUBF, Turkey.
- Chirila Ionut-Zaharia.
- Muhammed YÜKSEL.
- Merdangeldi Bayramov, Turkmenistan.
- Hari Kishan, Department of Mathematics D.N. College, Meerut, India.

Discussion:

Let $a=|H D|, b=|H E|, d=|H G|, c_{1}=|D G|$ and $c_{2}=|G E|$. Then,

$$
\frac{c_{1}}{c_{2}}=\frac{a}{b} \text { and } c_{1}+c_{2}=2023
$$

Solving the two equations above we get, $c_{1}=\frac{2023 a}{a+b}$ and $c_{2}=\frac{2023 b}{a+b}$. Denote the angle $D H G$ by α. Using the Law of Cosines we get,

$$
c_{1}^{2}=a^{2}+d^{2}-2 a d \cos (\alpha) \text { and } c_{2}^{2}=b^{2}+d^{2}-2 b d \cos (\alpha)
$$

Solve each of the equations above for $d \cos (\alpha)$ and it is easy to see that

$$
\frac{c_{1}^{2}-a^{2}-d^{2}}{a}=\frac{c_{2}^{2}-b^{2}-d^{2}}{b}
$$

Solve the equation above for d^{2} to obtain

$$
d^{2}=a b\left(1-\frac{2023^{2}}{(a+b)^{2}}\right)
$$

