Rational or Irrational?

Submission deadline: February $28^{\text {th }} 2024$

Is $\sin \left(1^{\circ}\right)$ an irrational number or a rational number?

The problem was solved by

- Arda Karahan, Trabzon Science High School, Turkey.
- Muhammed YÜKSEL.
- Ekansh Nitalie Garg, Dubai College, UAE.
- Ruben Victor Cohen, Argentina.
- K. Sengupta, Calcutta, India.
- Ionut-Zaharia, alumnus, Lower Danube University, Galati, Romania.

Discussion:
Assume that $r=\sin \left(1^{\circ}\right)$, is rational. Since $\cos (2 \theta)=1-2 \sin ^{2}(\theta)$, we get $\cos \left(2^{\circ}\right)=1-2 r^{2}$. Moreover, $\cos (2 \theta)=2 \cos ^{2}(\theta)-1$, hence it follows that $\cos \left(4^{\circ}\right)=2\left(1-2 r^{2}\right)^{2}-1$, and is rational. Thus, repeatedly doubling the angle 5 times we see that $s=\cos \left(32^{\circ}\right)$ is rational. Since $\cos \left(30^{\circ}+2^{\circ}\right)=$ $\cos \left(30^{\circ}\right) \cos \left(2^{\circ}\right)-\sin \left(30^{\circ}\right) \sin \left(2^{\circ}\right)$, and $\sin \left(2^{\circ}\right)=2 \sin \left(1^{\circ}\right) \cos \left(1^{\circ}\right)$, it follows that

$$
s=\frac{\sqrt{3}}{2}\left(1-2 r^{2}\right)-r \sqrt{1-r^{2}}
$$

Taking the first term of the right hand side of the equation above to the other side and squaring the equation yields

$$
s^{2}-\sqrt{3} s\left(1-2 r^{2}\right)+\frac{3}{4}\left(1-2 r^{2}\right)^{2}=r^{2}\left(1-r^{2}\right)
$$

Since s and r are rational numbers, it follows from the equation above that $\sqrt{3}$ is rational. Thus, $\sin \left(1^{\circ}\right)$ cannot be a rational number.

