The Last Digit

Submission deadline: February $28^{\text {th }} 2024$
Prove that the last digit of $2^{2^{n}}$ is 6 for $n \geq 2$.

The problem was solved by

- Ruben Victor Cohen, Argentina.
- K. Sengupta, Calcutta, India.
- Ionut-Zaharia, alumnus, Lower Danube University, Galati, Romania.
- Arda Karahan, Trabzon Science High School, Turkey.

Discussion:
We use mathematical induction. The assertion is clearly true for $n=2$. Now assume that it is true up to k. We have that

$$
2^{2^{k}}=10 m+6
$$

for some natural number m. Therefore,

$$
\left(2^{2^{k}}\right)^{2}=(10 m+6)^{2}
$$

Thus,

$$
2^{2^{k+1}}=100 m^{2}+120 m+36
$$

The remainder of $100 m^{2}+120 m+36$, upon dividing by 10 is 6 . Hence, the assertion is true for all natural numbers not less than 2 .

