Choices

Submission deadline: November 28^{th} 2023

Denote
$$\frac{n!}{k!(n-k)!}$$
 by $\binom{n}{k}$ where $0 \le k \le n$.
Evaluate $\binom{n}{0} - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \cdots$

The series is continued up to the point where the lower number becomes greater than the upper number.

The problem was solved by

• Rohan Mitra, Alumni, American University of Sharjah, UAE.

• Hari Kishan, Department of Mathematics D.N. College, Meerut, India.

• Roland Karlsson, Technical University of Linkoping, Sweden.

Discussion: Clearly, $(1+i)^n = \sum_{k=0}^n \binom{n}{k} i^k$ If k is odd, then k = 4p + 1 or k = 4p + 3, where p is a natural number. Thus, we have that $i^k = i$ or $i^k = -i$. If k is even, then k = 4p + 2 or k = 4p, where p is a natural number and it is easy to see that $i^{4p+2} = -1$ and $i^{4p} = 1$. Thus, it follows that the required sum is the real part of $(1+i)^n$. Since

Thus, it follows that the required sum is the real part of $(1+i)^n$. Since $1+i=\sqrt{2}e^{i\pi/4}$, we get

$$(\sqrt{2})^n \cos\left(n\frac{\pi}{4}\right) = \binom{n}{0} - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \dots + (-1)^m \binom{n}{2m}$$

where $2m \le n < 2(m+1)$.