Choices

Submission deadline: November $28^{\text {th }} 2023$

Denote $\frac{n!}{k!(n-k)!}$ by $\binom{n}{k}$ where $0 \leq k \leq n$.
Evaluate

$$
\binom{n}{0}-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\cdots
$$

The series is continued up to the point where the lower number becomes greater than the upper number.

The problem was solved by

- Rohan Mitra, Alumni, American University of Sharjah, UAE.
- Hari Kishan, Department of Mathematics D.N. College, Meerut, India.
- Roland Karlsson, Technical University of Linkoping, Sweden.

Discussion:
Clearly, $(1+i)^{n}=\sum_{k=0}^{n}\binom{n}{k} i^{k}$
If k is odd, then $k=4 p+1$ or $k=4 p+3$, where p is a natural number. Thus, we have that $i^{k}=i$ or $i^{k}=-i$.

If k is even, then $k=4 p+2$ or $k=4 p$, where p is a natural number and it is easy to see that $i^{4 p+2}=-1$ and $i^{4 p}=1$.

Thus, it follows that the required sum is the real part of $(1+i)^{n}$. Since $1+i=\sqrt{2} e^{i \pi / 4}$, we get

$$
(\sqrt{2})^{n} \cos \left(n \frac{\pi}{4}\right)=\binom{n}{0}-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\cdots+(-1)^{m}\binom{n}{2 m}
$$

where $2 m \leq n<2(m+1)$.

