Theme 6-6: Smart Grid - 2023

Title	Name of the PI	List the Names of the Co-Is	Department	Abstract	Starting Date	Ending Date	Funding	Amount of Funding
				Green energy and smart grid initiatives are driving the move from legacy power systems				
				toward sustainable systems with new features such as microgrids and inverter-interfaced				
				renewable energy sources (IIRESs). Nonetheless, the unconventional characteristics of the				
				IIRES current waveforms, which are totally unlike conventional generators, make protection				
				relays fail to protect AC microgrids. On the other hand, DC microgrids have recently received				
				substantial interest from both the industrial and academic communities. Compared with their				
				AC counterparts, DC microgrids offer better reliability, higher efficiency, simpler control and				
				are easier to accommodate IIRESs and modern loads, such as electric vehicle chargers (EVCs).				
				However, protecting DC microgrids against short-circuit faults remains the main barrier behind				
				the wide proliferation of these DC grids. The challenge stems from the significant and rapidly				
				rising DC fault currents from converters, along with the absence of no natural zero crossing.				
				The goal of the proposed research is to realize cost-effective protection for AC/DC microgrids				
				that guarantees the main protection requirements, i.e., speed, selectivity, sensitivity, and				
				reliability, and cost. In alignment with this goal, the following objectives will ensure cost-				
				effective (i.e., communicate-free) protection of AC/DC microgrids with IIRESs through				
				developing: (i) adaptive harmonic-based optimal protection coordination (OPC) for AC				
				microgrids, OPC in DC microgrids with current-limiting capabilities, and artificial intelligent (AI)-				
Toward Cost-Effective Protection of AC/DC Mic	crogrids Ahmed Osman	Maher Azzoz	ELE	tuned current derivative protection for DC microgrids.	01/06/2022	2 31/05/202	4 FRG	468,25