Skip to main content
  • MY AUS
  • Library
  • Strategic Plan 2020–2025
  • Prospective Students
  • Current Students
  • Faculty / Staff
  • Parents
  • Alumni
S
Home
  • About
    • AUS at a Glance
    • Vision of the Founder
    • Mission
    • Leadership
    • AUS Strategic Plan 2020–2025
    • Partners and Community
    • Employment
    • Visit and Explore
  • Admissions
    • Study at AUS
    • Bachelor's Degrees
    • Master's Degrees
    • Doctoral Degrees
    • Forms and Publications
    • International Students
    • Grants and Scholarships
    • Contact Admissions
    • Executive Education
    • Apply Now
  • Academics
    • Colleges and Schools
    • Programs and Departments
    • Achievement Academy
    • General Education Program
    • Accelerated Master’s Program
    • International Study and Exchange
    • Registrar's Services
    • Services and Resources
    • Library
    • Meet the Faculty
  • Life at AUS
    • Around Campus
    • Housing and Dining
    • Health and Wellness
    • Sustainability
    • Athletics and Recreation
    • Student Life
    • AUS Discount Program
    • On-Campus Services
    • Blog
  • Research
  • Contact Us
  • Apply Now
  • .

Dr. Rana Sabouni

  • Metal Organic Frameworks Group
    • Drug Delivery Group
    • Wastewater Treatment Group
    • Teaching
    • Students
    • Contact

Wastewater Treatment Group

  • Removal of Micro-pollutant from Wastewater

“Micro" refers to the pollutants’ molarity, as they are present in trace concentrations ranging from 1 ng/L to 1 μg/L. Micro-pollutants are also known as ‘emerging contaminants’, as they are compounds that emerged from pharmaceutical, pesticide, textile, and many other industries and compounds. Overall, the diversity and relatively low concentration of micro-pollutants complicate detection and treatment processes.

  • Adsorption of Dyes

Considerable amount of dyes is discharged into various water bodies and ecosystems from many industries such as textile, leather, paper, printing, plastic, and food processing. Among the emerging advanced treatment methods, adsorption is generally considered one of the most efficient methods for quickly lowering the concentration of dissolved dyes. The purpose of this project is to examine the adsorption kinetics and thermodynamics of several dyes onto MOFs. In addition, the feasibility of these MOFs as potential adsorbents to remove Methyl Orange (MO) from aqueous solutions will be investigated in batch and continuous setups.

  • Degradation of pharmaceutical compounds and emulsions

Photocatalysis involves the presence of intermediate semiconductor catalysts that absorb light photons of sufficient energy, greater than or equal to the band gap energy of the semiconductor (hν≥ Eg) which results in production of electrons (ecb-) and holes (hcb+) in the conduction and valence bands as electron-hole pairs 16. Provided that recombination does not occur, electrons and holes that migrate to the semiconductor surface can produce hydroxyl and superoxide radicals that react with and transform organic molecules causing their degradation. The purpose of this research is to investigate the photo-degradation efficiency of number of micro-pollutants and nanoemulsion using batch and oscillatory membrane photocatalytic reactors. (In collaboration with Dr. Hassan Gomaa, Western University Canada.)

  • MEMS Device for Real-time Monitoring of Mercury Concentration in Marine Aquacultures

In this project, we propose the design, fabrication, and evaluation of the performance of a novel chemical sensor comprising electrically-actuated microbeams. This device is expected to be deployed for real-time monitoring of mercury concentration in marine aquacultures open water. (In collaboration with Dr. Mehdi Ghommem, American University of Sharjah, UAE.)

ABOUT US

  • Accreditation
  • Job Opportunities
  • Leadership
  • Maps and Directions
  • Safety and Security

APPLY

  • Financial Grants
  • Funding and Assistantships
  • Undergraduate
  • Graduate
  • Study Abroad
  • Residential Halls

RESOURCES

  • AUS Catalogs
  • Academic Calendar
  • Photo Gallery
  • Discover Sharjah
  • Library
  • FAQ

TOOLS

  • AUS Employee Email
  • AUS Student Email
  • MY AUS

© 2021 American University of Sharjah. All rights reserved.

  • PRIVACY POLICY
  • SITEMAP
  • CONTACT US